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Abstract

The goal of this paper is to provide a detailed description of the steps
required to implement a Möbius energy numerical approximation algo-
rithm for untangling knots, along with a brief introduction to the basics
of knot theory. The steps include defining a knot energy, choosing the cor-
rect independent variables for the gradient flow equation, discretizing the
components of the approximation, and computing the gradient. Addition-
ally, a dynamic time-step optimization technique is provided by bounding
the magnitude of the spatial-step, resulting in a significant increase in the
simulation’s performance together with an improvement in the method’s
stability.

1 Introduction

Knot theory is the subfield of topology that focuses on the study of, you guessed
it, knots. This research topic is of great interest through several areas of real-
world applications ranging from the study of polymer shapes [1] in molecular
biology – notably DNA knots [2] all the way to data representations such as
high dimensional path planning in robotics [3].

At the end of the day, as topology often goes, it all comes down to classifi-
cation. The main bulk of the research in knot theory consists of finding ways
to distinguish knots, defining meaningful characterizing properties and, when
given a knot, identifying its class. A wonderful book [4] by Rolfsen from 1976
makes for a great introduction to the world of knot classification and is ac-
companied by an extensive amount of hand drawn knots. Scharein’s thesis [5]
also provides a great and more recent reference on the topic, and presents his
pioneering KnotPlot software.

Although there are many fascinating facets to topological knot theory, this
paper focuses on the more computational side of things. Performant numerical
approximation methods and reproducible implementations provide useful tools
in the study and analysis of such abstract problems.

To achieve the task of untangling a knot, the general idea is to define a knot
energy E that provides a metric for a curve’s “knottedness”. This energy must
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be defined in such a way that it blows up in the case of self-intersection. The first
to come up with an energy satisfying this property was O’Hara in 1988 [6] when
he proposed what was later called the Möbius energy. His work was motivated
by previous research based on the electrical force exerted between two particles
of opposite charge [1]. O’Hara’s discovery was groundbreaking in the field of
knot theory, since it finally provided an “infinite barrier to self intersections”
[7]. Freedman et al. [8] subsequently proved the energy’s invariance to Möbius
transformations, hence the given name.

To the best of my knowledge, the most cutting edge knot untangling im-
plementation, and the main influence of this paper, was done by Yu et al. in
2021 [9]. Their method incorporates the tangent point knot energy defined by
Buck and Orloff from 1995 [10]. However, for no particular reason other than
curiosity, this paper concentrates on the implementation of the Möbius energy
instead.

The goal of this piece of research is to provide in details the step-by-step
requirements for the implementation of a knot untangling method using the
Möbius energy, with a brief introduction to the basics of knot theory along
the way. An important emphasis is set on the intuition behind the approxi-
mated gradient flow equation given in [9]. The entire derivation for the gradient
approximation is provided in the Appendix. Moreover, a method is given for
dynamically setting the approximation time step, providing an increase in per-
formance and stability. This is achieved by setting a bound over the magnitude
of the spatial-step, while ensuring safe and large time steps when appropriate.

2 Knots

In topology, knots don’t have loose ends; they are closed loops. They are defined
as embeddings of the circle S1 into three-dimensional space R3. Two knots are
considered equivalent if they can be smoothly deformed into one another [5].
The applied deformation is restricted in such a way that prevents the cutting,
stitching or intersecting of the curve. Formally, this is called a homeomorphism,
and two knots are said to be homeomorphic when such a deformation exists
between them. An embedding is pronounced unknotted or trivial if it can be
continuously deformed into a circle, otherwise it is knotted. Sometimes knots
can consist of more than one embedding of the circle. These, embeddings can
either be linked or disjoint, and each embedding is referred to as the one of the
knot’s components. For example the logo for the Olympics is a knot containing
six linked components, although, they are often displayed with intersections
which is rarely legal in knot theory.

The unknot decision problem consists of determining if a given knot can be
unknotted. This problem has been proven to be in the NP complexity class [11]
and motivates the study of knot untangling methods, hopefully to help gain
some useful insight.

Below are descriptions of some knots that will be repeatedly studied through-
out this work: the torus knot, the overhand knot, and the reef knot.
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(a) Overhand knot (non-closed) (b) Reef knot (non-closed)

Figure 2: The Trefoil knot

Torus knot. A torus knot is generated by
specifying the amount of revolutions around
the origin axis and around the circle axis. The
torus knot, denoted T (p, q), is parametrically
defined as follows

x = [r2 · cos(p · ϕ) + r1] · cos(p · ϕ)
y = [r2 · cos(p · ϕ) + r1] · sin(p · ϕ)
z = −r2 sin(q · ϕ)

where r1 is the radius of the revolution around
the origin, r2 is the radius of the revolution
around the circle axis, p determines the num-
ber of revolutions around the origin, q deter-
mines the number of revolutions around the
circle axis, and 0 < ϕ ≤ 2π.

Overhand knot. The overhand knot is a special one, since it is secretly a
torus knot. To study its properties, we connect its end-points. Once closed,
it suddenly becomes equivalent to the trefoil knot T (2, 3). The trefoil is the
simplest occurence of a knotted embedding, i.e. it can’t be unknotted.

Reef knot. The reef knot is a simple sailing knot. Unlike the overhand knot,
there are multiple ways to close it due to its four end-points.

(a) Overhand knot (closed) (b) Reef knot (closed) (c) Reef knot (closed)

3



3 Möbius energy

The goal of this paper is to provide a method for untangling knots. This method
should continuously deform a knot up to its simplest form. In the trivial case the
result would be a circle, and for the closed overhand knot a trefoil. In order to
achieve this, the amount of knottedness is quantified by means of a knot energy
E . This energy must be steady for circles and blow up to infinity in the event
of self-intersections.

Let γ(s) be our closed curve embedding, parametrized by its arc-length s.
The embedding is a function γ : M → R3 where M ⊂ R+ is the arc-length
parameter space. One of the most prominent examples of knot energies, and
the one implemented in this paper, is O’Hara’s Möbius energy [6]. The energy
was influenced by Coulomb’s inverse-square law for quantifying the electrical
force between two particles [1]. As defined in [9], the non-regularized Möbius
energy is given by

E(γ) =
∫∫
M×M

1

∥γ(u)− γ(v)∥2 − 1

d(u, v)2
dv du (1)

where d(u, v) is a function d : M × M → R+ that gives the shortest distance
between γ(u) and γ(v) along the curve and ∥ · ∥ is the standard Euclidean
distance in R3. Intuitively, the first term in the integrand echoes Coulomb’s
law for opposite sign particles: the force exerted between two particles scales
inversely to their squared distance. As for the curve, the closer two points are,
the greater the contribution from this electrical force term. Notice that it blows
up to infinity as the distance approaches null. The second term in the integrand
is motivated by the first. To represent knottedness, a point pair should not
excert attraction when they are close along the curve itself. These two cases are
well visualized on the hourglass geometry, where the points in the middle are
close to each other in space but far apart along the curve.

u v

d(u, v) = 0.444 ‖γ(u) − γ(v)‖ = 0.444

u v

d(u, v) = 3.301 ‖γ(u) − γ(v)‖ = 0.271

Figure 4: Curve distance (pink) vs. Euclidean distance (blue) on the hourglass
geometry.
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3.1 Minimizing the Möbius Energy

In order to untangle a knot, we aim to minimize equation 1. As described in
[9], the behavior is modeled through a gradient flow equation:

γt = −∇E(γ) (2)

Where γ represents the three-dimensional curve as a function of time and arc-
length, and ∇E is the gradient of the energy function. Intuitively, as time
increases, the goal is for the curve’s energy to decrease. Since the gradient
yields a vector in the spatial direction of the energy’s steepest increase, the
gradient flow equation seems to model the desired behavior.

Now, the tricky part is in finding what the gradient of our energy really
means. It is unclear with respect to which independent variables the gradient in
equation 2 is evaluated. Three possible candidates are considered. The simplest
choice of spatial variable is the arc-length parameter s, turning equation 2 into

γt = −Es
Indeed, E is a function of γ which in turn is a function of s. However, the Möbius
energy doesn’t even depend on a choice of arc-length because it computes a
double integration over all arc-length pairs. The fact that our energy is global
implies that ∂

∂sE = 0. Geometrically, the direction of a step in arc-length is
always along the curve and has no effect on the energy. This shows that we
need to consider variations that are not along the curve to minimize the Möbius
energy. A logical next approach could be to view the parametrized curve in the
following form

γ(s) =

x(s)y(s)
z(s)


where x, y, z are functions mapping the arc-length to their corresponding co-
ordinates in space. It does seems reasonable to consider x, y, z as the spatial
variables since a variation of either of them isn’t necessarily along the curve.
The gradient flow from equation 2 would then be written asxt

yt
zt

 = −

ExEy
Ez


To see the problem with this equation, consider the translation of the curve in
space. The energy of a curve centered at the origin doesn’t differ from that of
same curve centered somewhere else. The Möbius energy is thus invariant under
variations in x, y, z. Sadly, as with the arc-length, Ex = Ey = Ez = 0.

In fact, the energy only varies with respect to the curve’s overall shape. This
is good news, since it should not change with respect to anything else. The only
variable describing the entire shape of the curve, is the curve γ itself. Therefore,
the equation that correctly models our desired behavior should not be equation
2, which is confusing, but instead the following differential equation

γt = −Eγ (3)
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4 Numerics

4.1 Discretization

To simulate knot untangling, equation 3 must be discretized in time and in space.
The curve γ is chosen to undergo the space discretization, and is numerically
represented as an array of N vertices denoted γ̂. This is particularly useful for
the implementation, since three-dimensional objects are usually represented the
same way in .obj files.

The Möbius energy from equation 1, being a double integral over γ, must
now iterate over a discrete set γ̂ as opposed to a continuous range of values, and
is now expressed as the following double summation

Ê(γ̂) =
N∑
u

N∑
v

1

∥γ̂(u) − γ̂(v)∥2 − 1

d̂(u, v)2
(4)

Where γ̂(i) ∈ R3 is the ith vertex on the discretized curve and d̂(u, v) is the

discretized curve distance function. The definition for d̂ is provided in the
Appendix.

It is now officially possible to describe our equation as the gradient flow from
equation 2, since the discretization of our curve γ̂ creates N independent spatial
variables that satisfy the behavioral requirements.

γ̂t = −∇Ê
The following system of differential equations is obtained

γ̂
(1)
t

γ̂
(2)
t
...

γ̂
(N)
t

 = −


Êγ̂(1)

Êγ̂(2)

...

Êγ̂(N)


Where Êγ̂(i) is the partial derivative of the discretized Möbius energy with re-

spect to the ith vertex. The analytic solution for the gradient term ∇Ê is shown
in detail in the Appendix.

A simple forward Euler approximation is used to discretize in time

γ̂n+1 = γ̂n − dt · ∇Ê (5)

where dt is a small enough time step. An optimization for defining a stable time
step value is proposed in the next section.
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4.2 Time step optimization

The step in space taken in equation 5 is determined by the magnitude of the
energy’s gradient and the time step dt. For a fixed dt, when a knot is tightly
tangled with high magnitude energy gradients, there is no guarantee as to where
the approximation step brings the tangled segments. This is because when two
curve segments get arbitrarily close, the magnitude of the Möbius energy gradi-
ent becomes arbitrarily large. Therefore the approximation’s spatial step size is
unbounded. Moreover, in this situation there is a possibility for self intersection
with the segments opposing the tangled ones. Recall that the Möbius energy
was defined to blow up at self-intersections, thus breaking the approximation.
As a result, the time step required for a stable untangling is often extremely
small as to avoid the possibility of self intersections. In fact, a time step of
dt = 1 × 10−7 is required to prevent the closed reefknot from exploding when
iterating n = 10 times.

(a) dt = 1× 10−4 (b) dt = 1× 10−5 (c) dt = 1× 10−6 (d) dt = 1× 10−7

To ensure the stability of the method, the time step value dt is dynamically set
to a value such that it is impossible for a spatial step in the opposing direction
of the gradient to induce self intersection. The time step size is calculated like
so

dt =
dmin × tolerance

max(∇Ê)
Where dmin is the minimum distance between any two vertices on the curve. The
tolerance is a user-defined parameter which indicates up to what proportion of
the minimum distance the approximation step can take. A higher tolerance will
lead to a quicker untangling, but cause unwanted oscillations between vertices
over time. Whereas a lower tolerance yields a longer but smoother untangling
experience. Figure 6 demonstrates the overwhelming performance increase this
varying time step optimization provides. Indeed, in just over a minute, the
varying time step method successfully untangles the closed reef knot whereas
the constant time step method makes almost no progress.
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11132

11612

E
ne
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dt = 1× 10−7

(a) Energy vs. Time (in seconds).

(b) Resulting shape after 400 iterations.

Figure 6: Varying time step (left) vs. constant time step (right)
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5 Results

The proposed knot untangling method was implemented in python 3.10 and
is available on GitHub through this link. This paper’s experiments were run
on a personal computer equipped with the Apple Silicon M1 Pro chip along
with 32GB of memory. The energy gradient computation is parallelized over all
vertex pairs and follows closely the results shown in the Appendix.

Experiments are shown with three different curves: the 2D hourglass geome-
try consisting of 72 vertices as a toy example to visualize the gradient directions,
the closed reef knot with 60 vertices for a two component untangling demon-
stration, and the closed overhand knot with 69 vertices to show its conversion
to the trefoil knot.

E = 3417.03

(a) n = 0

E = 2787.96

(b) n = 250

E = 1489.22

(c) n = 500

E = 640.39

(d) n = 1599

E = 640.31

(e) n = 1600

Figure 7: Möbius gradients of the hourglass geometry over 1600 iterations with
tolerance=0.01

The gradient arrows of the hourglass geometry confirm the correctness the
gradient computation described in the Appendix. They indicate a higher energy
for closer segments, and steps in their opposite direction effectively “untangle”
the curve. The reason behind the shorter arrow length at n = 0 stems from the
geometry’s vertex distribution. It is common to have higher vertex densities at
higher curvature segments, causing a non-uniform distribution of the vertices
along the curve. Each arrow is of length dmin – the minimum distance between
any two vertex pairs along the curve computed for the time step optimization.
Initially, that distance value is extremely small because of the higher density
segments where neighboring vertices get extremely close. This often occurring
initial state causes the method to express a smoothing behavior, which is ex-
plained in detail later in this section.

After about a thousand iterations, the hourglass shows the oscillating be-
havior mentioned at the end of the stability discussion. Figures 7d and 7e are
at one iteration apart and the gradient arrows around the oval directly shift
from pointing from one neighbor to the other. This oscillation effect can be
attenuated by reducing the tolerance parameter since the iteration step would
cause less disruption along the curve.
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(a) n = 0 (b) n = 100

(c) n = 200 (d) n = 300

(e) n = 400 (f) n = 600

Figure 8: Closed reef knot untangling over 600 iterations with tolerance = 0.1.
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(a) n = 0 (b) n = 100

(c) n = 400 (d) n = 800

Figure 9: Knot untangling from the closed overhand knot to the trefoil in 800
iterations with a tolerance of 0.1

Figure 10: Generated trefoil knot T (2, 3) for reference.

Aside from untangling knots, an interesting effect of the method is the ini-
tial smoothing of the curve. Throughout the experiments the first few iterations
serve to smooth out the curve’s vertices. For example, compare Figure 9a with
9b. Roughly, this is because neighbors tend to pull on each other with equal
forces. Indeed, the gradient of the curve distance term (denoted Bi in the
Appendix) yields an attractive force between a vertex and its neighbor in the
approximation. Since the simulation is stepping in a spatial direction that de-
creases the energy, it seeks lower distances between vertices along the curve as to
reach a higher value for d(u, v). However, a shorter distance between neighboring
vertices yields a higher distance with their neighbors in the opposing direction.

11



Figure 11: Distortions
for tolerance = 0.99.

This is why, in the highly likely case of an initial non-
uniform distribution of the vertices along the curve,
the method seeks to uniformly distribute the vertices.
Once the electrical force energy term overcomes the
curve distance term, the untangling begins. It is diffi-
cult to demonstrate the untangling quality difference
between tolerance values via still images. The os-
cillations created by high tolerance values propagate
through out the curve, and in some cases create se-
vere distortions. For pretty looking untangling anima-
tions, lower tolerance values such as 0.05 are often pre-
ferred, although requiring more iteration steps. Video
demonstrations of experiments with other knots are
included in the extra material.

6 Conclusion

In the end, the Möbius energy is an intuitive function that induces the knot
untangling behavior when minimized. Although it requires very small time step
values to provide stability, the implementation’s performance is significantly
increased by applying a dynamic time step optimization scheme.

A useful application of the presented method could be to help smooth out
poor designs while preventing self-intersections with other segments – it defi-
nitely fixed my poor Blender designs. Therefore, some variation of this method
could definitely be used as a correction tool to help speed up the 3D modelling
process.

The implementation still lacks a few important features. First of all, the
method currently relies on a fixed number of iterations to terminate. It should
instead rely on a metric determining an appropriate time to stop the simulation.
An idea is to track the progress made in the untangling such as in [9], and stop
the iterations once the progress dives under a predetermined threshold. Further,
the method is short on testing, and should undergo rigorous stress tests. To date,
there have been no experiments with knots containing more than 100 vertices,
and the method’s limits and drawbacks are unclear. Finally, to help with the
oscillations at higher tolerance values, an idea could be to add a damping term
to the approximated system of equations.

In the future, I believe it would be beneficial to implement the same struc-
tured implementation with several knot energies at once, such as the tangent
point energy [10], with the goal of gaining further insight into different energy
strengths and weaknesses.
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Appendix A

A.1 Discretized curve distance function

We must adapt the curve distance function d(u, v) where u, v are arc-lengths to

the discretized curve γ̂. The discretized curve distance function d̂(u, v) computes
the length of the shortest path P along the curve between vertices γ̂(u) and γ̂(v)

where u, v are now indices. It is given by the following equation

d̂(u, v) =
∑
ab∈P

∥γ̂(a) − γ̂(b)∥

Where ∥ · ∥ is the usual Euclidean distance norm. The pink path in figure 4

shows visualizations for d̂(u, v).

A.2 Gradient of the discretized Möbius energy

We solve for the gradient of the discretized Möbius energy from equation 4

∇Ê =


Êγ̂(1)

Êγ̂(2)

...

Êγ̂(N)


The partial differentiation by the ith vertex Eγ̂(i) can be analytically solved by
hand. Starting with

Êγ̂(i) =
∂

∂γ̂(i)

N∑
u

N∑
v

1

∥γ̂(u) − γ̂(v)∥2 − 1

d̂(u, v)2

=

N∑
u

N∑
v

∂

∂γ̂(i)

1

∥γ̂(u) − γ̂(v)∥2︸ ︷︷ ︸
Ai(u,v)

− ∂

∂γ̂(i)

1

d̂(u, v)2︸ ︷︷ ︸
Bi(u,v)

Where d̂(u, v) is defined in Appendix A.1 as the discretized curve distance func-
tion. Ai(u, v) is the partial derivative of the electrical force term between vertices
γ̂(u), γ̂(v) with respect to vertex γ̂(i), and Bi(u, v) is the partial derivative of the
curve distance term involving the same vertices.

Electrical force term partial derivative Ai. Evaluating the partial of the
Ai term yields

Ai(u, v) =
∂

∂γ̂(i)

1

∥γ̂(u) − γ̂(v)∥2 =


−2 γ̂(i)−γ̂(v)

∥γ̂(i)−γ̂(v)∥4 if i = u

2 γ̂(u)−γ̂(i)

∥γ̂(u)−γ̂(i)∥4 if i = v

0 Otherwise.
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To show this, first consider the vector v ∈ R3. The chain rule is applied
to the result later to generalize for Ai. The derivative for the inverse of the
squared Euclidean norm of v yields

d

dv

1

∥v∥2 = −2
v

∥v∥4

Proof. Substituting the Euclidean norm definition in the equation gives

1

∥v∥2 =
1

x2 + y2 + z2

=⇒ d

dv

1

∥v∥2 = − 1

(x2 + y2 + z2)2
d

dv
(x2 + y2 + z2)

= − 1

∥v∥4
d

dv
(x2 + y2 + z2)

Now

d

dv
(x2 + y2 + z2) = 2x

d

dv
x+ 2y

d

dv
y + 2z

d

dv
z

= 2v · d

dv
v (scalar product)

= 2v

(
dv

dv
= 13×3

)

Therefore

d

dv

1

∥v∥2 = −2
v

∥v∥4

Using this result, the following partial derivative is evaluated

Ai(u, v) =
∂

∂γ̂(i)

1

∥γ̂(u) − γ̂(v)∥2

By substituting v = γ̂(u) − γ̂(v) and applying the chain rule for the cases i ∈
{u, v}, we get that

∂

∂γ̂(i)

1

∥γ̂(u) − γ̂(v)∥2 =


−2 γ̂(i)−γ̂(v)

∥γ̂(i)−γ̂(v)∥4 if i = u

2 γ̂(u)−γ̂(i)

∥γ̂(u)−γ̂(i)∥4 if i = v

0 Otherwise.

Curve distance term partial derivative Bi. The Bi partial is given by

Bi(u, v) =
∂

∂γ̂(i)

1

d̂(u, v)2
= −2

1

d̂(u, v)3

[
∂

∂γ̂(i)
d̂(u, v)

]
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where

∂

∂γ̂(i)
d̂(u, v) =



γ̂(i)−γ̂(i−1)

∥γ̂(i)−γ̂(i−1)∥ − γ̂(i+1)−γ̂(i)

∥γ̂(i+1)−γ̂(i)∥ i ∈ P and i ̸= u, i ̸= v
γ̂(i)−γ̂(i−1)

∥γ̂(i)−γ̂(i−1)∥ i− 1 ∈ P and i ∈ {u, v}
− γ̂(i+1)−γ̂(i)

∥γ̂(i+1)−γ̂(i)∥ i+ 1 ∈ P and i ∈ {u, v}
0 Otherwise.

Where P is the path of shortest length from vertex γ̂(u) to γ̂(v). This result is
shown by analyzing the different shortest path P cases obtained when computing
the discretized curve distance function. The goal is to find

Bi(u, v) =
∂

∂γ̂(i)

1

d̂(u, v)2

= −2
1

d̂(u, v)3

[
∂

∂γ̂(i)
d̂(u, v)

]
The difficulty is in evaluating the following term

∂

∂γ̂(i)
d̂(u, v) =

∂

∂γ̂(i)

∑
ab∈P

∥γ̂(a) − γ̂(b)∥

First of all, if the ith vertex is not in the shortest path from vertex u to v then
Bi(u, v) = 0. When it is in P , we have three different cases. We first note that
any term involving γ̂(i) in the summation will either be

∥γ̂(i+1) − γ̂(i)∥ or ∥γ̂(i) − γ̂(i−1)∥

Assuming the neighbors are indexed sequentially and the ith vertex’s neigh-
bors are γ(i+1) and γ(i−1). Now if both of its neighbors are in the path, both
terms are in the distance computation. However, if i ∈ {u, v}, then the deriva-
tive depends on whether i marks the beginning or the end of the path, and P
accordingly contains only one of its neighbors. Putting this all together yields

∂

∂γ̂(i)
d̂(u, v) =



γ̂(i)−γ̂(i−1)

∥γ̂(i)−γ̂(i−1)∥ − γ̂(i+1)−γ̂(i)

∥γ̂(i+1)−γ̂(i)∥ i ∈ P and i ̸= u, i ̸= v
γ̂(i)−γ̂(i−1)

∥γ̂(i)−γ̂(i−1)∥ i− 1 ∈ P and i ∈ {u, v}
− γ̂(i+1)−γ̂(i)

∥γ̂(i+1)−γ̂(i)∥ i+ 1 ∈ P and i ∈ {u, v}
0 Otherwise.

These derivatives come from the chain rule applied to the fact that for a vector
v ∈ R3, its Euclidean norm derivative yields

d

dv
∥v∥ =

v

∥v∥

which has a similar proof to that of inverse norm squared derivatives.
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