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Abstract
The oloid is famous for its mesmerizing rolling behavior. It is less known however,
that it is a member of larger family of rolling objects: the Two Disk Rollers. A simple
𝑧-coordinate scaling can be applied to Morton’s tritangentless knots (Morton, 1991)
to obtain TDR convex hulls. Even more, the TDRs have a subfamily with constant
center of mass height when rolled (Engelhardt and Ucke, 2017). The 𝑧-scaled knots
can be projected to these TDRs, yielding smooth rolling knots. Even more, the same
process can be applied to a generalization of Morton’s knots.
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Introduction
Apart from classic circular solids like spheres or cylinders, what other geometry rolls? Enter the
developable rollers; a class of fantastic new shapes with very interesting properties. The first
and most famous of these shapes are the oloid and sphericon, both defined by the convex hulls
of orthogonal circles and half circles respectively. Most relevant to this research are the families
of developable rollers these objects belong to. David Hirsch, the sphericon’s inventor, showed
his roller to be a member of the larger Polycon family (Hirsch and Seaton, 2020). However the
oloid’s family, the Two Disk Rollers (TDR), was defined independently from the oloid. They
encompass a much larger collection of rolling objects, all defined by orthogonal disks. The in-
trigued should read (Engelhardt and Ucke, 2017) for an in-depth enumeration of these objects.

Figure 4: Sphericon Figure 5: Oloid

As proposed in (Eget, Lucas and Taalman, 2020), one can quantify the smoothness of an ob-
ject’s rolling behavior by computing the range of the height of its center of mass across the
rolling trajectory. Here, this metric is referred to as rolliness and denoted by 𝜌.

A smooth rolling object is considered to have 𝜌 = 0, like a sphere, since its center of mass
height remains constant. The previously mentioned sphericon and its family have the interesting
property that they roll smoothly. Even more, as shown in (Engelhardt and Ucke, 2017), a sub
family of the Two Disk Rollers roll smoothly when their disk radii and distances satisfy a zero-
rolliness condition.

Now what about knots? Although most work in knot theory has been about the classification of
their topology, this paper focuses on the rolling properties of a specific family of knots: Morton’s
knots (Morton, 1991). These knots are special, because they are tritangentless, meaning any
three points on the curve can’t share a tangent plane. What this means for rolling, intuitively,
is the absence of support planes. With no support planes, the knot can’t be stably placed on a
surface and is then more likely to roll.

By considering the convex hull of Morton’s knots, we can reason about their rolling behav-
ior. The work done in (Eget, Lucas and Taalman, 2020) was to optimize the rolliness of Mor-
ton’s knots. They found the optimal rolling Morton knot and devised a 𝑧-stretch factor, which
stretches the 𝑧-axis to obtain even lower rolliness measures. Furthermore, in (Dzojic and Kupf-
fer, 2023) was added a horizontal stretching factor, which reduced the rolliness even more. This
paper will provide the reasoning behind the effect of these transformations on the rolliness
measures. This is achieved by linking the Morton knots to concepts from the TDR family. Ad-
ditionally, a new transformation is proposed that yields a new family of knots with a rolliness
measure of 𝜌 = 0. In other words, we obtain a family of smooth rolling knots in the sense that
they roll with zero center of mass height variations.

We aren’t trying to reinvent the wheel here … or are we? Although this research is purely mo-
tivated by mathematical curiosity, there has been a growing interest in robotics for the use of
these rolling space curves. For example, imagine a rotating agent, dynamically orienting itself
by transforming its defining space curve.
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Prerequisite Material
Morton’s knots
Formally, a knot is the embedding of 𝑆1 in ℝ3, i.e. closed space-curves. Closure in this case
indicates that the curve is a closed loop; it ends where it begins. A (𝑝, 𝑞) torus knot is a curve
defined by it’s number of revolutions along the longitudinal and meridional axes of a given
torus. It is usually parametrized by an angle 𝜙 as follows:

𝑥(𝜙) = (𝑟 cos(𝑞𝜙) + 𝑅) ⋅ cos(𝑝𝜙) 𝑦(𝜙) = (𝑟 cos(𝑞𝜙) + 𝑅) ⋅ sin(𝑝𝜙) 𝑧(𝜙) = −𝑟 sin(𝑞𝜙)

where 𝑝 is the number of revolutions along the longitudinal axis (around the origin), and 𝑞
along the meridional axis (around the tube), and 𝑅, 𝑟 the torus radii. A trefoil is a (2, 3) or 
(3, 2)-torus knot.

Morton’s knots are the main character of this paper. They are a special flavor of trefoils, with
the property that they are tritangentless. Tritangency is when three points on a curve share
a tangent plane. It is the property that makes a tricycle stable, and a bicycle unstable. Since
they are guaranteed to never admit a supporting plane, Morton’s knots are good candidates
for studying the rolling properties of space curves. The knots in question are obtained by the
following stereographic projection:

𝑥(𝜙) =
𝑐𝑎 cos(3𝜙)
1 − 𝑏 sin(2𝜙)

𝑦(𝜙) =
𝑐𝑎 sin(3𝜙)
1 − 𝑏 sin(2𝜙)

𝑧(𝜙) =
𝑐𝑏 cos(2𝜙)
1 − 𝑏 sin(2𝜙)

with 𝑎2 + 𝑏2 = 1 and 𝑎, 𝑏 ≠ 0. This imposed relationship between parameters makes it such that
Morton’s knots are entirely determined by the value of 𝑎. In order to obtain knots that are on
the same scale for different values of 𝑎, Eget et al. added the extra 𝑐 scaling parameter, and set
it to 𝑐 = 𝑎

1+𝑏  such that the torus radii satisfy 𝑅 + 𝑟 = 1 .

Figure 6: Morton knot with 𝑎 = 0.5
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Convex Hull
A convex hull is a convex set in ℝ𝑛, meaning it has the property that for any two of its points,
it also contains the line traced between them. The convex hull of a set of points 𝑃 ⊂ 𝑅𝑛 is the
intersection of all convex sets 𝑆 ⊂ ℝ𝑛 such that 𝑃 ⊂ 𝑆.

(a) Convex hull (in blue) of a random set of
points.

(b) The Oloid is the convex hull of two or-
thogonal circles passing through each other's

centers.

Rolliness 𝜌
A rolling trajectory is the curve on a surface that indicates the path the object traces when
rolling. For a sphere, the rolling trajectory would be a circle around the direction it rolls in.

When taking the convex hull of space curves, like the oloid’s disks, we obtain a ruled surface,
meaning any point on the surface lies on a straight line. An obvious example of a surface which
is not ruled is the sphere, which has no straight lines. At every instance during the rolling be-
havior of our ruled surfaces, the contact points with the ground plane are the surface’s defining
lines. Thus, the rolling trajectory of a ruled surface can be defined as the curve consisting of
the lines’ midpoints. Figure 1 shows the oloid’s rolling trajectory, along with one of its ruled
surface lines.

Figure 1: Rolling trajetory of the oloid (orange) and projected center of mass on one of it’s
trajectory lines.
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Rolliness is the metric, denoted by 𝜌, measuring how smoothly an object rolls. A measure of 
𝜌 = 0 indicates a smoothly rolling object, such as a sphere. Specifically, the height of the center
of mass at every point along the rolling trajectory is considered to measure rolliness. This height
is depicted for a specific instance on the rolling trajectory of the oloid in Figure 1. The metric
is defined the same way as Eget et al. by the following Range to Average Ratio:

𝜌 =
max 𝑦cm −min 𝑦cm

𝑦cm
(1)

where 𝑦cm is the projected height of the center of mass of points along the rolling trajectory,
and 𝑦cm is the mean projected height which is used to obtain a scale invariant metric.

Figure 8: Center of mass height variations of 2D rolling objects and the oloid.

Additional intuition for the rolling behavior of general object’s can be gained from reflecting
on the objects initial state. The ellipse from Figure 8 is a good example of a rolling object with
non-constant center of mass height variations i.e. 𝜌 ≠ 0. If it is initialized on its longer side,
then it will not roll. Indeed, it’s side is the state in which its center of mass is at its lowest
height, corresponding to the bottom of the valleys in Figure 8′s height curves. However, if we
push it long enough and get it over its tip, it will start rolling. When on its tip, the ellipse is
at its center of mass height peak, and when pushed over it, the ellipse will roll continuously if
the conservation of energy is respected. Rolliness can be thought of as a metric for this thought
process. The higher the rolliness, the longer the push will be to get it over its first center of
mass height peak occurence. This checks out for the sphere’s zero rolliness value, since virtually
no pushing is needed to get it rolling.
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Two Disk Roller
A two disk roller is defined as the convex hull of two orthogonal ellipses with radii 𝑎, 𝑏 and a
distance between their centers of 𝑐. The TDR family has the very useful property that they
have 𝜌 = 0 when

𝑐2 = 4𝑎2 − 2𝑏2 (2)

This equation will be continually referred to as the zero-rolliness condition, and the family of
TDRs satisfying it will be called the zero-rolliness TDRs.

Interestingly enough, since circles are ellipses, the oloid is a TDR with 𝑎 = 𝑏 = 𝑐 = 1. As shown
in Figure 8, the oloid has 𝜌 ≠ 0. This is in accordance with Equation 2, since the oloid does not
satisfy the zero-rolliness condition. However, the oloid can be easily modified to roll smoothly
by setting the distance between the circles to 𝑐 =

√
2.

Figure 9: A Two Disk Roller with 𝑎 = 0.5, 𝑏 = 0.3, 𝑐 = 0.7
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Results
TDR Morton knots
The aim is to transform Morton’s knots such that the resulting convex hull is a zero-rolliness
Two Disk Roller. But why is it that by matching the convex hull we obtain the same rolliness?
This is because the only part of a torus knot contributing to its rolling behavior are the seg-
ments that define its convex hull i.e. its exterior. Due to their symmetry, torus knots have the
same center of mass as their convex hulls, which is not necessarily the case for other knots. If
this was not the case, the density of the convex hull would need to be considered in order to
study the knot’s rolliness.

When computing the convex hull of Morton’s knots, the resemblance to the good ol’ oloid is
uncanny. This begs the question: how close is it to the oloid? or a TDR? In order to relate
Morton knots to TDRs, we fit disks to the exterior segments of our knots.

Figure 10: The convex hull of the 𝑎 ≈ 0.4786 Morton knot looks like an oloid.

,

Figure 11: The approximated disks to the 𝑎 ≈ 0.4786 Morton knot have 𝑎, 𝑏, 𝑐 TDR parameters
satisfying the zero-rolliness condition
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Intriguingly, when 𝑎 ≈ 0.4786, the corresponding Morton knot satisfies the zero-rolliness con-
dition. Indeed, this knot’s approximated disks have TDR parameters 𝑎 = 0.5876, 𝑏 = 0.59197
and 𝑐 = 0.82479 that approximately satisfy Equation 2. But this knot has non-zero rolliness 
𝜌 = 0.2509. So how could this be?

Well, the thing is, the convex hulls of these approximated disks are not TDRs. To be a TDR
is to be defined by orthogonal disks, meaning the planes they lie in are defined by orthogonal
vectors. This is not the case for the Morton knot satisfying the zero-rolliness condition. In
fact, exactly one Morton knot has orthogonal approximated disks: the 𝑎 = 0.5831 Morton knot.
Coincidentally, this is the 𝑎 value for the smoothest rolling Morton knot (minimal 𝜌) found
in (Eget, Lucas and Taalman, 2020). This is strong evidence as to why no Morton knot rolls
smoothly: the unique Morton knot satisfying the zero-rolliness condition does not coincide with
the unique Morton knot with orthogonal approximated disks.

Eget et al. further introduced a 𝑧-stretching factor that helped reduce the rolliness of the other,
non-orthogonal-disk-having knots. Now instead of this convoluted name, let’s refer to the family
of Morton knots with orthogonal approximated disks as the TDR Morton knots, since their
convex hulls are TDRs. The main discovery of this section is that the optimal 𝑧-stretching factor
corresponds to a scaling factor leading to orthogonal approximate disks, as shown in Figure 12.
These optimal 𝑧-stretched knots thus populate the TDR Morton knot family.

Figure 12: Optimizing 𝑧stretch of the 𝑎 = 0.45 Morton knot for 𝜌 gives orthogonal disks. The
middle knot is a member of the TDR Morton knot family.

The next observation is that no TDR Morton knot has TDR parameters satisfying the zero
rolliness condition from Equation 2. This is good intuition as to understanding why (Eget,
Lucas and Taalman, 2020) did not obtain perfectly smooth rolling Morton knots.

Zero-rolliness TDR Morton knots via TDR projections
The previous section was about the 𝑧stretch transformation that yields orthogonal approximate
disks, and defines the TDR Morton knot family: a class of knots with TDR convex hulls. There-
fore, applying a transformation to a TDR knot to obtain a zero-rolliness TDR convex hull yields
a smooth rolling knot!

The method starts with the TDR knot’s approximated disks. A value of 𝑐 satisfying the zero-
rolliness condition from Equation 2 is computed by using the 𝑎, 𝑏 ellipse radii of the approxi-
mated disks. These three parameters thus define a zero-rolliness TDR, and all that is left is to
project the TDR knot to the zero-rolliness TDR disks. For this, a computational approach is
used, in which the exterior points are matched exactly to their closest point on the zero-rolliness
TDR disks. A decaying translation is applied to the interior points to preserve continuity.
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We note that the projection to the zero-rolliness TDR disks is mostly a “horizontal stretch”
in the axis of the knot’s maximum width in the 𝑥𝑦 plane, and thus explains why a horizontal
scaling improved rolliness values in (Dzojic and Kupffer, 2023).

Figure 15 shows that the resulting projected knot has the lovely smoothness property of 𝜌 =
0, and will be referred to as a zero-rolliness TDR Morton knot.

Figure 13: The zero-rolliness TDR disks with
the same ellipse radii as the 𝑎 = 0.8 TDR

knot’s approximated disks.

Figure 14: The stretched 𝑎 = 0.8 Morton knot
projected to zero-rolliness TDR disks.

Figure 15: The projected knot has no center of mass height variations.

9



Smooth Rolling Morton Knots Results

In fact we can apply this projection method to all TDR Morton knots, and it indeed yields an
entire family of smooth rolling knots.

Figure 16: Rolliness of the TDR Morton knots and zero-rolliness TDR Morton knots which
indeed have zero-rolliness.

Simulation
The projection method is validated through simulation. To simulate rolling knots, we place
them on a slightly tilted plane to provide a directed force to initiate the rolling. Additionally,
depending on the knot, a larger initial force is required to nudge them over their center of
mass peak.

It is found through simulation that the projected knot does not require a larger initial force
to begin it’s rolling behavior, whereas both the base and stretched knots require forces with
magnitudes of around 14N and 11N for a duration of 20 and 10 simulation frames to get over
their center of mass height peaks.

Figure 17: Simulated height variations of Morton knots with 𝑎 = 0.8.
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The previously mentioned peaks can be seen in Figure 17, and the initial force is the one needed
to push the knot over their first occurence. The projected knot has no initial hill, and thus
requires no initial force. The small kink is because the knot is initialized slightly higher than
needed, and thus is in free fall until hitting the plane. The slight deviation in the projected
knot height curve is due to the knot’s discretization and Blender’s collision detection. A much
lower knot resolution is required to obtain a decent running time for Blender simulations.

Generalized Morton knots
In (Eget, Lucas and Taalman, 2020) it was mentioned that to roll, a knot need only be exter-
nally tritangentless. This means dealing with Morton’s knots is overkill, since we don’t require
these knot to be tritangentless everywhere, but only on the exterior. By taking values of 𝑝 > 3
odd, we obtain a generalization of Morton’s knots, which appear to have this property.

The value of 𝑞 = 2 is mandatory for torus knots to roll, since any more would yield external
tritangents. One can visualize this by placing the torus flat on a support plane. The intersection
of the plane and the torus draws a circle on the plane, and corresponds to the lowest parallel
line on the torus. A (𝑝, 𝑞)-torus knot crosses this lowest parallel exactly 𝑞 times. Even more, the
support plane is in fact tangent to these points. If 𝑞 > 2, then the knot would wrap around the
tube more than twice, and thus cross the lowest parallel more than twice, making the support
plane a tritangent.

We can apply the same 𝑧-stretching optimization to obtain new TDR Morton knots, and im-
proved rolliness values.

Figure 19: Height variations along the rolling trajectory of generalized TDR Morton knots.
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As 𝑝 increase, it becomes less clear how these knots are related to Two Disk Rollers. But the
increase in complexity makes the rolling trajectory of these knots particularly intriguing.

Figure 20: The 𝑝 = 31 generalized 𝑎 = 0.8 TDR Morton knot and its rolling trajectory.

Finally, by following the same reasoning as before, the projection method can be applied to
these new knots. For 𝑝 = 5, the projection successfully yields a generalized zero-rolliness TDR
knot while preserving the topology (see Figure 21). Simulation of this knot confirms its rolliness
properties.

Figure 21: Projected 𝑝 = 5 generalized Morton knot with 𝑎 = 0.5
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Simulated Geometric

Figure 22: Geometric and simulated center of mass height variations for the 𝑝 = 5 generalized
Morton knot.

However, for 𝑝 ≥ 7, the projection method breaks. Although the resulting knot still has zero
rolliness, the topology of the base knot is lost because of self intersections during the projection.

Figure 23: The projection method breaks for 𝑝 ≥ 7 generalized Morton knots due to self inter-
sections.
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Conclusion
The smoothest rolling Morton knot from (Eget, Lucas and Taalman, 2020) corresponds to the
unique instance in the Morton knot family with orthogonal approximate disks. The effect of the
Eget et al.’s 𝑧-stretch is of modifying the angle between the approximated disks, and obtaining
orthogonal disks in rolliness optimality. The TDR Morton knots are the family of optimally 
𝑧-stretched knots with orthogonal approximate disks. However there is no TDR Morton knot
satisfying the zero-rolliness condition. Projecting the TDR Morton knots to zero-rolliness TDR
disks by means of a decayed translation yields a class of smooth rolling knots. Further, since an
object only needs to be externally tritangentless to roll, one can generalize the Morton knots
to obtain new rolling knots with higher complexity. These generalized knots can be 𝑧-stretched
as well, which improves the rolliness, but the projection method can only be applied for the 
𝑝 = 5 generalized knot, since the method does not preserve the topology for higher 𝑝 values.

There remain many un-answered questions: What do the optimized parameter values, such as
𝑎 = 0.5831 represent analytically? Is there a closed formula to express a surface’s center of mass
height variations? Are all generalized Morton knots externally tritangentless? Also, there must
be a better projection method to preserve the topology of higher 𝑝 valued generalized knots.
Furthermore, one could use a curve energy to smoothen out the projections.
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